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Abstract. Accurate treatment of the plasma density effects requires a detailed knowledge of the spatial
distribution of individual ions around a test ion. In the present work, rigorous expressions are derived for
the main 2- and 3-particle spatial distribution functions involving the nearest neighbor (NN) and the next-
nearest neighbor (NNN) ions. These expressions, valid for both ideal and nonideal plasmas, present the
distributions as functionals of the potentials UNN and UNNN at the nearest and next-nearest ion locations.
All of the distribution functions except one are derived and discussed in the present work for the first
time ever. For utilization of our results in practical calculations, we suggest semi-empirical expressions
for UNN and UNNN in the ion-ion coupling parameter range 0 ≤ Γ < 1. In order to test the accuracy of
our expressions for UNN and UNNN we conduct Molecular Dynamics (MD) simulations. The simulations
utilize the pure Coulomb particle-particle interaction potentials, regularized at close range to avoid classical
Coulomb collapse, and are free from the assumptions made to find UNN and UNNN. Thus, the results of
the MD simulations provide an independent test of our theoretical results. Excellent agreement has been
found between the results of the theory and of the MD simulations. Finally, we outline the implications of
the present findings on the problem of tunneling and charge exchange in dense plasmas.

PACS. 52.25.-b Plasma properties – 34.10.+x General theories and models of atomic and molecular
collisions and interactions (including statistic theories, transition state, stochastic and trajectory models,
etc.) – 52.65.Cc Particle orbit and trajectory

1 Introduction

Progress in dense plasma physics necessitates a detailed
account of the effects of the plasma environment on ionic
bound states. In plasmas, a potential that binds an atomic
(ionic) electron to its parent ion is distorted by the poten-
tials of the surrounding ions and free electrons. In dilute
plasmas, the mean interionic distance is much larger than
the average radii of the bound states of sufficiently low
principal quantum number. Therefore, in dilute plasmas,
the total electric field of the surrounding particles does
not vary significantly over the span of the wavefunction,
and the Uniform Local Microfield (ULM) approximation
is adequate [1] for describing the effect of the plasma en-
vironment [2] on those states. In dense plasmas, however,
the mean inter-ionic distance is small, thus the applicabil-
ity of the ULM approximation is restricted to the very low
bound states, or in extreme cases to none at all. A correct
treatment of higher-lying quantum states requires a more
accurate description of the binding potential, i.e., neces-
sitates an account of the spatial distribution of individual
neighbor ions around the test ion. This is of particular
importance for the treatment of transient quasimolecu-
lar states in dense plasmas [3–5] and for the study of the
charge exchange [6] in general. In these cases the elec-
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tron quantum states that span inter-ionic distances must
be considered. For these states the ULM approximation
obviously fails. The problem of determining the effective
statistical weights of bound states [7–10] in dense plasmas
has previously been treated primarily in the ULM approx-
imation [8,9]. However, in this case, too, the wavefunctions
of the states in question span inter-ionic distances, and the
use of the detailed knowledge on the spatial distribution of
the neighbor ions can improve the precision significantly.
An accurate method for the determination of the effective
statistical weights of the bound states based on the present
findings will be reported separately [11]. The use of the ac-
curate expressions for the effective statistical weights will
allow the plasma equation-of-state and Rosseland opac-
ity calculations (see, e.g., [12]) to attain higher precision
[13]. Finally, being of basic interest as a part of statistical
physics, the study of spatial distributions of the neigh-
bor ions will also improve the general understanding of
plasma density effects on transition rate coefficients and
spectral line profiles [1,10,14–16]. In the treatments pub-
lished so far the NN ion spatial distribution was obtained
by Monte-Carlo [4,17,18] or MD [16] simulations. How-
ever, the use of computer simulation routines to deter-
mine the NN distribution for each type of ions for each
set of local thermodynamic conditions in inhomogeneous
transient plasmas is not feasible. Analytical expressions,
therefore, must be found for the spatial distribution of the
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NN ion and for the spatial and angular distributions of a
few (at least one) next-nearest ions.

In this paper we report the results of both theoretical
studies and quasiclassical MD simulations of the spatial
distributions of ions around a test ion in nonideal plas-
mas. We introduce the probability P0(r) to find no ions
(of a given type) within r from the test ion, the distribu-
tion function PNN(r) of the distance r between the test ion
and its NN ion, the distribution PNNN(ρ) of the distance
ρ between the test ion and its NNN ion, the simultane-
ous distribution PNNN(r, ρ) of the distances r and ρ, and
the distribution function Prat(ζ) for the ratio ζ = ρ/r.
To the best of our knowledge, in the present work for the
first time ever the distribution functions P0(r), PNNN(r, ρ),
PNNN(ρ), and Prat(ζ) are studied and the expressions for
them are given. As yet, only an expression for PNN(r) has
been published [10]. In Section 2 we describe our theoret-
ical model and derive the exact expressions for the dis-
tribution functions P0(r) and PNN(r) as the functionals
of the potential UNN(r) at the NN ion location. Next, we
suggest and discuss an analytical expression for UNN(r)
valid for the ion-ion coupling parameter range 0 ≤ Γ < 1.
This provides for P0(r) and PNN(r) the closed expressions
that become exact in the weak coupling limit. In Section 3
we present both strict expressions and approximate ana-
lytical expressions for the distribution functions PNNN(ρ)
and PNNN(r, ρ). In the study of non-resonant charge ex-
change [6,19] and of the field ionization due to the NN ion
effect (originally in [20]), the tunneling is assumed to take
place in the field of the NN ion alone. To take into account
the effect of the other surrounding ions, and foremost of
the NNN ion, one needs to know the distribution function
Prat(ζ) of the distance ratio ζ. The expressions for this dis-
tribution are also presented in Section 3. In order to test
independently our theoretical results, we conducted the
quasiclassical MD simulations for PNN(r), P0(r), PNNN(ρ),
and Prat(ζ). The simulation results are presented in Sec-
tion 4. We also simulate and discuss the distribution func-
tion P (θ) of the angle θ between the directions from the
test ion to the NN ion and from the test ion to the NNN
ion. The discussion of the assumptions made in order to
obtain the approximate analytical expression forUNN(r) is
given in Section 5. The implications of the present results
for the description of non-resonant charge exchange and
tunneling in dense plasmas are outlined in Section 6. The
detailed treatment of the effect of the plasma environment
on tunneling processes in plasmas, on effective statistical
weights of bound states, and on the rates of kinetic pro-
cesses will be presented in a separate paper [11]. In the
present study, plasma is assumed to be classical, i.e., the
temperature Te of the free electrons is much higher than
their Fermi energy.

2 Nearest neighbor distribution

We present here an analytical expression for PNN(r) in
nonideal classical plasmas. First, we derive the general,
rigorous expressions for P0(r) and PNN(r) as functionals of

the potential UNN(r) at the NN ion location, without mak-
ing any assumptions on the form of the potential. Then,
we find a simple semi-empirical analytical expression for
UNN(r) in a nonideal classical plasma. This allows us to
obtain approximate expressions for P0(r) and PNN(r) con-
venient for the actual calculations. Later in this work (in
Sect. 4) we compare our theoretical predictions with the
results of the MD simulations, in order to test the accu-
racy of the approximate expressions mentioned.

Let us denote by Zt and Zi the charges of the test ion
and of the surrounding ions, respectively. We define the
distance-to-the-NN-ion probability distribution PNN(r)dr
as the probability to find the ion nearest to the test ion
at the distance between r and r + dr from the test ion.
This is thus the probability for the absence of ions within
the distance r from the test ion and for the presence of an
ion in the distance range (r, r+ dr) from the test ion. The
normalization condition is

∫∞
0
PNN(r)dr = 1. For brevity,

we refer to PNN(r) as the “NN distribution”.
The common approach for obtaining PNN(r) starts

with the determination of the ion-ion pair correlation func-
tion g(r), which gives the ratio of the (ensemble-averaged)
density ni(r) of the ions at the distance r from the test ion
to the density of the ions ni averaged over the macroscopic
volume in consideration, i.e.,

g(r) = ni(r)/ni.

The pair correlation function in plasmas has been stud-
ied for several decades (see e.g. [21,22]). In reference [10]
it was used for the theoretical determination of the NN
distribution. The resulting expression for PNN(r) was

PNN(r) = 4πni(r)r2 exp
{
− 4π

r∫
0

ni(r′)r′2dr′
}

(1a)

= 4πnir
2g(r) exp

{
− 4πni

r∫
0

r′2dr′g(r′)
}
. (1b)

However, even for accurate g(r), this approach produces
only approximate predictions for PNN(r), the reason for
the inaccuracy being the neglect of the effect on ni(r) of
the absence of ions inside r (since the probability for the
nearest ion to be found at r is considered). The density of
ions at r under the constraint of absence of ions inside r
differs from nig(r), and consequently the pair correlation
function g(r) cannot be used in the expression (1b) for a
precise PNN determination. A rigorous derivation, given in
the Appendix, shows that the form (1a) is still accurate,
provided ni(r) is evaluated under the constraint of absence
of ions inside r. For the proper choice of ni(r) the equality
between (1a) and (1b) is therefore only approximate.

The density ni(r) of ions at the distance r from the test
ion, in the absence of other ions inside the sphere of radius
r, can be evaluated using the Boltzmann formula for gases
in potential fields [23]. Assuming that the ion distribution
on coordinates and velocities outside r corresponds to an
equilibrium described by the ion temperature Ti, the ion
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density ni(r) at r (i.e. between r and r + dr) is given by

ni(r) = ni exp
{
− βZieUNN(r)

}
, (2)

where β = 1/Ti, and UNN(r) is the total potential at the
distance r from the test ion. The subscript NN indicates
that UNN(r) is the potential experienced by the nearest
neighbor ion at the distance r from the test ion. This po-
tential is produced primarily by the test ion (located at
the origin) and by free electrons found in the sphere of
radius r. Substituting the expression (2) for ni(r) into ex-
pression (1a), we obtain

PNN(r) = 4πnir
2 exp

{
− βZieUNN(r)

− 4πni

r∫
0

r′2dr′ exp(−βZieUNN(r′))
}
· (3)

For the accurate potential UNN(r) this expression is exact.
The probability P0(r) to find no ions within r from the
test ion is given by the expression (A.1) derived in the
Appendix. Expression (A.1) is also exact for the accurate
UNN(r).

Let us now find a reasonably accurate analytical ap-
proximation for UNN(r). In this work we consider a non-
ideal classical plasma with the ion-ion coupling parameter

Γ ≡ Γii = βZ2
i e

2

(
4
3
πni

)1/3

= β
Z2

i e
2

a

values in the range 0 ≤ Γ < 1. Here

a =
(

4
3
πni

)−1/3

is a characteristic interionic distance. We emphasize that
the charges Zi and Zt are not the charges of the bare
nuclei; rather, they include the charges of the bound elec-
trons belonging to a plasma ion and to the test ion, respec-
tively. This formulation of the problem allows the results
to be readily applied to the problems of dense plasmas
atomic physics, e.g., to the determination of the effective
statistical weights of the bound states. Indeed, to deter-
mine the effective statistical weight of a certain quantum
state of the test ion, one needs to know the distribution
of the neighbor ions around the test ion in that state, i.e.,
in a specified ionization stage. The charge (the ionization
stage) of both the test ion and the neighbor ions are there-
fore fixed as the external parameters of the problem. For
now, we describe ions (including the test one) as pointlike
particles. Thus, we neglect here the effects arising from the
nonzero size of the ions (i.e., from the nonzero radius of
the bound electron clouds). In Section 5 below, we discuss
the accuracy of the pointlike ions assumption, and sug-
gest correction terms for the NN ion potential. From the
definitions of the distribution functions P0, PNN, PNNN it
is clear that the quantities we are looking for are aver-
aged over all the free electron coordinates. Therefore, we

describe the free electrons as a continuous charge-density
distribution rather than as individual particles.

To find the potential UNN(r), it is convenient to start
with the total ion-ion potential U(r) in plasma. This is
the total average potential produced by the test ion and
by the surrounding ions and free electrons at a distance r
from the test ion. It is well known [22,24–27] that, as far as
the total ion-ion potential is considered, the Debye-Hückel
(DH) approximation is accurate for Γ . 0.1 and adequate
for 0.1 . Γ < 1. Techniques that account for additional
classes of correlation effects provide higher accuracy, but
do not generally yield predictions for U(r) in an analytic
form [22] and are therefore unsuitable for our purpose.
The total ion-ion potential U(r) in the DH approximation
is given by

U(r) =
Zte

r
exp(−r/RS),

where

RS =

√
T

4πe2(Zi + Z2
i )ni

(4)

is the Debye screening radius. This expression for RS as-
sumes Te = Ti = T and macroscopic charge neutrality
ne = Zini.

The potential UNN(r) experienced by the NN ion con-
tains, in comparison to U(r), an additional term due to the
uncompensated negative net charge of the free electrons
within the sphere of radius r. We reiterate that, since all
the test-ion bound electrons are already accounted for in
the charge Zt of the test ion, only the charge of the free
electrons in the sphere r must be accounted for explicitly
in the derivation of UNN(r). The free electrons do not con-
centrate within a small volume V � n−1

e around the test
ion, but rather occupy the entire sphere r, and the free
electron density ne(r) does not diverge stronger than r−2

near the origin. The nearest-neighbor potential UNN(r) (as
well as U(r)) at the small distances is therefore governed
by the direct ion-ion repulsion, i.e.,

UNN(r) ≈ Zte

r
for r � n

−1/3
i ,

and the exact asymptotic behavior of the free electron
density at r → 0 is thus unimportant. At the distances
r & n−1/3

i , however, the effect of the free electrons charge
inside r is important. At these distances the two most
important effects produced by the free electrons are (i)
change in the net charge of the sphere r, which becomes
in the first approximationZt−4πr3ne/3, and (ii) screening
of the net charge of the sphere r. Thus, we obtain

UNN(r) =
e

r

(
Zt −

4
3
πr3ne

)
exp(−r/RS). (5)

The semi-empirical expression for UNN(r) above is, of
course, approximate rather than exact. In particular, it
is not a priori valid for r � a; however, as explained be-
low, its validity is relevant only for r as large as a few a.
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It is in order to test the validity of this expression (or,
more exactly, of the expressions (3, A.1) evaluated using
(5) for UNN) that we conduct the MD simulations the re-
sults of which are presented in Section 4.

Substituting the potential (5) into the general expres-
sion (3), one can see that, indeed, the characteristic spatial
scale for PNN(r) is given not by RS but rather by a char-
acteristic interionic distance a. The probability PNN(r) is
of practical interest only up to r as large as a few a; for
larger r’s it is essentially zero. For r > a, even in ideal
plasmas PNN(r) converges with r like r2 exp{−(r/a)3}. In
nonideal plasmas the convergence at r > a is faster yet,
since at r ≈ a the total charge of the free electrons in-
side the sphere r exceeds −Zt and thus at larger r the
potential UNN(r) is attractive for ions. The exception to
this rule may be the case Zt � Zi, when UNN(r) does not
become attractive until roughly r ≈ a(Zt/Zi)1/3. The case
Zt ≈ Zi is most common for plasmas. The case Zt � Zi,
which may occur in plasmas of chemical mixtures, is of
particular interest for stellar plasma physics. In the lat-
ter case, the test ion (“emitter ion”) considered is often
a multiple ion of a heavier element (say, Fe) immersed in
a fully-ionized H plasma. In Section 4, we compare PNN

given by expressions (3, 5) with the results of MD simu-
lations. In our MD simulations electrons are presented as
individual pointlike Coulomb particles, thus allowing the
validity of our assumptions on ne(r) to be tested.

3 Distribution of the next-nearest
neighbor ion

The expression for the distribution PNNN(ρ) of the dis-
tance ρ from the test ion to the NNN ion is derived
similarly to that for PNN(r). Typically, the NNN ion
has the same charge Zi as the NN ion. The probability
PNNN(r, ρ)drdρ for a NN ion to be found between r and
r + dr and for a NNN ion to be found between ρ and
ρ+ dρ is a product of three probabilities: (i) the probabil-
ity PNN(r)dr for the NN ion to be found at the distance
r, where 0 ≤ r ≤ ρ, from the test ion; (ii) the probabil-
ity P0,NNN(r, ρ) to find no ions between r and ρ provided
there are only two ions (test and NN) within the sphere
of radius r; and (iii) the probability P1,NNN(r, ρ)dρ to find
an ion between ρ and ρ + dρ provided there are only two
ions (test and NN) within r and none between r and ρ.
Thus,

PNNN(r, ρ) = PNN(r)P0,NNN(r, ρ)P1,NNN(r, ρ). (6)

The probability for the NNN ion to be found between ρ
and ρ + dρ (regardless of the NN ion position) is then
given by

PNNN(ρ) =

ρ∫
0

PNNN(r, ρ)dr

=

ρ∫
0

drPNN(r)P0,NNN(r, ρ)P1,NNN(r, ρ). (7)

Here, PNN(r) is given by expression (3). An expression for
P0,NNN(r, ρ), derived similarly to expression (A.1) of the
Appendix, is

P0,NNN(r, ρ) =

exp
{
− 4πni

ρ∫
r

r′2dr′ exp(−βZieUNNN(r, r′))
}
, (8)

where UNNN(r, r′) is the potential experienced by the NNN
ion at r′ (provided the NN ion is at r). The probability
P1,NNN(r, ρ) can be expressed via UNNN(r, ρ) as

P1,NNN(r, ρ) = 4πρ2ni exp(−βZieUNNN(r, ρ)). (9)

To perform practical calculations, we suggest an expres-
sion for UNNN(r, ρ) similar to that for UNN(r) above
(Eq. (5)), but with an account of two ions inside the sphere
of radius ρ, i.e.,

UNNN(r, ρ) =
e

ρ

(
Zt + Zi −

4
3
πρ3ne

)
exp(−ρ/RS). (10)

Note that this expression is independent of r. The accu-
racy of this expression and of the general form (7) will
be discussed in Section 4. Using a procedure analogous to
that described above, the distributions of the distances to
the 3rd, 4th, ..., nth nearest neighbor ions may be deter-
mined, too, if required.

Let us now derive the distribution Prat(ζ) of the ratio
ζ = ρ/r ≥ 1 of the distances. As a starting point we can
take our expression for PNNN(r, ρ)drdρ. For any given r,
we are looking for the probability to find ρ such that ζr ≤
ρ < (ζ+dζ)r. This probability is given by PNNN(r, ρ)drdρ
for ρ = ζr and dρ = rdζ, i.e. by

PNNN(r, ζr)drdρ = PNNN(r, ζr)rdr dζ.

Since a given value of ζ can occur for any value of r,

Prat(ζ)dζ =

∞∫
r=0

PNNN(r, ζr)rdr dζ. (11)

This expression is valid for both ideal and nonideal plas-
mas. For an ideal plasma, β → 0, the expression for
Prat(ζ)dζ acquires a particularly simple form. In this limit,

PNN(r) = 4πnir
2 exp

(
−4

3
πnir

3

)
= 3

r2

a3
exp

(
− r

3

a3

)
,

P0,NNN(r, ρ) = exp
(
−ρ

3 − r3

a3

)
,

P1,NNN(r, ρ) = 3
ρ2

a3
,

and thus

PNNN(r, ζr) = 9
ζ2r4

a6
exp

(
−ζ

3r3

a3

)
.
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For the ζ distribution in an ideal plasma, the integra-
tion (11) gives:

P id
rat(ζ)dζ =

3
ζ4

dζ. (12)

This is, however, the case only in the strictly ideal plas-
mas. Even in the weakly-coupled plasmas one finds Prat(ζ)
to decay exponentially as ζ →∞. It is, indeed, easy to see
that for large ζ the main contribution to the integral (11)
comes from small r. The reason for the power-law decay
of P id

rat(ζ) at large ζ is therefore in the slow convergence
of PNN(r) as r → 0 in the ideal plasmas. In other words,
when ρ/r is large it is with much higher probability due to
r � a than due to ρ� a. Now, we note that even in the
weakly-coupled plasmas the decay of PNN(r) at r → 0 is
actually exponential, due to the direct Coulomb repulsion
between the test ion and the NN ion. The decay of PNN(r)
at r → 0 is exponential even when the test ion is neutral,
as at the sufficiently small r the NN ion penetrates the
bound electrons cloud of the test ion (see Sect. 5). There-
fore, it is only in the formal limit of the strictly ideal
plasma that Prat(ζ) decays at ζ → ∞ according to the
power law. In real plasmas, at sufficiently large values of ζ
the decay always becomes exponential. The smaller is Γii,
the larger are the values of ζ at which this occurs. In the
opposite limit of a very strong coupling (Γii > 150 [10,22])
one should expect the ions to settle into a crystal lattice,
and Prat(ζ) to tend to a delta-function at ζ = 1.

The distribution function P (θ) of the angle θ between
the directions to the NN ion and to the NNN ion in an
ideal plasma is readily obtained. We choose the direction
from the test ion to the NN ion as the z-direction, rel-
ative to which the angle θ is defined, 0 ≤ θ ≤ π. We
define P (θ, ϕ) dΩ as the probability to find the direction
to the NNN ion in the element of the solid angle dΩ =
sin θ dθdϕ. The symmetry on ϕ implies P (θ, ϕ) dΩ ≡
(1/2π)P (θ) sin θ dθdϕ. In ideal plasmas the distribution
is uniform over Ω, therefore P id(θ) = 1/2 and thus the
probability to find the NNN ion between θ and θ + dθ in
ideal plasmas is given by sin θ dθ/2. In non-ideal plasmas
the repulsion between the NN and NNN ions becomes sig-
nificant, and P (θ) decreases as θ approaches 0. This devi-
ation from the distribution uniformity over Ω is examined
by MD simulations, and the results are presented in the
next section.

4 MD simulations

We have performed classical-trajectory molecular-dyna-
mics simulations for two-component electron-ion plasma.
Both electrons and ions were treated as classical nonrel-
ativistic pointlike particles with masses me and Mi and
charges −e and e, respectively. The charge neutrality con-
dition was given by the equation Ne = Ni, where Ne and
Ni are the total numbers of electrons and ions considered.
The initial distribution of the particles inside the mod-
eling volume V was uniform (random for each particle,
and uncorrelated). The initial velocity distribution of the

particles was Maxwellian, with the electron and ion tem-
peratures taken to be equal, i.e., Te = Ti = T .

To speed up the simulations, the ion mass was re-
duced to Mi = 10me. It is easy to see that in equilib-
rium the near-neighbor distributions do not depend on the
ratio Mi/me. The simulated near-neighbor distributions,
in comparison to the simulated local microfield distribu-
tions, are significantly less sensitive to the total number
of particles used in the MD simulations. Still, we ascer-
tained that for every set of parameters the linear size of
the simulated plasma volume was much larger than the
Debye radius, in order to avoid any ambiguity in the in-
terpretation of the results. In a typical run, 1260 particles
were simulated. Larger particle numbers were used in the
simulations at lower Γ values. In several cases we have
repeated the tests with a twice the number of particles
simulated. The results for single and double particle num-
bers were, within the noise range, indistinguishable. Lack
of need to simulate large numbers of particles allowed us
to use a mirror walls approximation for the boundaries of
the simulated volume (instead of the periodic boundaries
commonly used). The finite-differences algorithm used to
solve the equations of motion was based on a second-order
scheme with adaptive time-step. This approach proved
reliable enough to keep the plasma temperature nearly
constant throughout the run, i.e., for tens of ion plasma
periods τpi = 2π

√
Mi/(4πniZ2

i e
2). Since the classical de-

scription was used for electron-ion interactions, the cap-
ture of electrons into discrete atomic quantum states was
not possible. To avoid the classical “Coulomb collapse”,
the electron-ion Coulomb interaction was cut off exponen-
tially at small distances. At the end of the present section
we examine the effect of this cutoff in detail.

We have conducted MD simulations for a series of
Γ values between 0.015 and 0.79. At the ion density
ni = 1018 cm−3 and Zi = Zt = 1 used, these values of
Γ correspond to ion temperatures Ti between 15.2 and
0.294 eV. As we said above, our analytical expressions
for the spatial distribution functions, which are using (5)
for UNN(r), become exact in the limit of small Γ . At
Γ = 0.015, the results of the theory and of the MD simula-
tions are practically indistinguishable. Figure 1 shows our
theoretical predictions for PNN(r) and PNNN(ρ) compared
to the results of MD simulations, for several Γ values.
The distances r and ρ are given in units of a, and the
distribution functions PNN(r) and PNNN(ρ) are given in
units of a−1. Let us first consider the comparison results
for PNN. One can see that the agreement is excellent, to
within 1% or better near the peak. The predicted relative
level of statistical noise for the MD results is slightly less
than 1% in the vicinity of the peak, growing to few per
cent on the wings. For Γ = 0.015, the theoretical and MD
results coincide within the noise levels. For Γ = 0.10, the
theoretical and MD results coincide within the noise lev-
els except in the region 0.2a < r < 0.6a, where the MD
results are 1–3% higher than the theory predicts, which
is slightly outside the noise range. For Γ = 0.35 the MD
results coincide with the theory predictions in the peak
region 0.6a < r < 1.3a, exceed somewhat the theory
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Fig. 1. Comparison of the MD results for PNN(r) and PNNN(ρ)
with the analytical predictions. MD results are shown for Γ =
0.015 by squares, for Γ = 0.10 by circles, and for Γ = 0.35 by
triangles. Solid and hollow symbols show results for PNN and
PNNN, respectively. Theoretical predictions are shown by the
solid lines for Γ = 0.015, by the dashed lines for Γ = 0.10, and
by the dotted lines for Γ = 0.35.

predictions in the region 0.2a < r < 0.6a, and are slightly
below the theory predictions in the region r > 1.3a
(roughly 2–3 times above the noise level). We have found
that the discrepancy in the 0.2a < r < 0.6a region at
larger Γ ’s is due to the effect of the classical quasiatoms
in the MD simulations, as it will be explained at the end of
the present section. The discrepancy in this case is caused
by the assumptions made in the MD model rather than
by the inaccuracy in the theoretical treatment. The dis-
crepancy for Γ = 0.35 and r > 1.3a, on the other hand, is
due to both the local density variations in the MD model
and the limited accuracy of our approximation for UNN(r)
at these Γ . For the distribution P0(r) the agreement be-
tween the theory and the MD simulation results is better
yet. Indeed, P0(r) is mostly influenced by the near-peak
values of PNN(r), for which the agreement is excellent.

The agreement of the theoretical predictions for
PNNN(ρ) with the MD simulation results is also very good,
even surprising, considering the simplicity of the assump-
tions we made for UNNN. Indeed, in general, the prob-
ability to find the NN ion at r and the NNN ion at ρ
not only depends on the absolute values of r and ρ but
also on the angle θ between their directions. The proba-
bilities P0,NNN(r, ρ) and P1,NNN(r, ρ) in expression (7) are
implicitly integrated over θ. When the integration over θ is
carried out, the effect of the higher-than-monopole terms
in the expansion of the total potential around the ori-
gin on P0,NNN(r, ρ) and P1,NNN(r, ρ) does not vanish com-
pletely. Thus, in contrast to expressions (3, 6, 7, 11) for
PNN(r), PNNN(r, ρ), PNNN(ρ), and Prat(ζ), respectively,
which are all exact, expressions (8, 9) for P0,NNN(r, ρ) and
P1,NNN(r, ρ) are approximate. Indeed, it is easier for the
NNN ion to approach the test ion from the side opposite to
NN ion, and harder to approach from the same side; these
two effects do not a priori cancel each-other out as a re-

sult of the integration over θ, and must be accounted for
if an exact expression for the product P0,NNNP1,NNN(r, ρ)
for nonideal plasmas is to be written. Still, for Γ < 1
the accuracy of the prediction (7–10) for PNNN(ρ) is very
good.

In order to test the model validity for larger ion
charges, we have also performed simulations for Zi = Zt =
3. In this case, the electroneutrality dictated Ne = 3Ni;
specifically, 500 ions and 1500 electrons were simulated,
for Γii values of 0.16 and 0.33. Note that for Zi 6= 1 the
coupling constants depend on the particle types, namely,
Γ ≡ Γii = ZiΓie = Z2

i Γee = βZ2
i e

2/a. Our theoretical cal-
culations agree very well with the MD simulation results
in this case, too.

The MD simulations described here also produce the
distribution of the ratio ζ = ρ/r of the distances to the
NNN and NN ions. Figure 2a presents the comparison of
the MD results for Prat(ζ) with the ideal-plasma predic-
tion (12) shown by the solid line. For clarity, statistical
error bars are only shown for MD data at Γ = 0.35. One
can see that the tail of the Prat(ζ) distribution diminishes
with the increase of Γ , as we predicted. Still, for Γ < 1
the deviations of Prat(ζ) from P id

rat(ζ) are small, especially
in the ζ ∼ 1 region. For example, as Γ increases from 0
to 0.35, the average 〈ζ〉 decreases by about 6% only. Fig-
ure 2b shows the same Γ = 0.35 data set as Figure 2a, but
in the range 1 < ζ ≤ 2 and in a linear scale for Prat(ζ).
The ideal plasma limit is also shown. The two data sets
for smaller Γ ’s shown in Figure 2a are omitted in Fig-
ure 2b as they lie too close to P id

rat(ζ). One can see that
even for Γ = 0.35 the difference between the MD results
and the ideal-plasma prediction for Prat(ζ) in the region
1 < ζ < 1.7 is less than 5%.

The probability P (θ) to find a certain angle θ be-
tween the directions to the NN and to the NNN ions is
shown in Figure 3. The MD results for Γ = 0.35, 0.075,
and 0.015 are presented, as well as the ideal plasma limit
P id(θ) = 1/2. As noted above, the probability to find
a certain value of θ in the small interval dθ is given by
P (θ) sin θ dθ. For all three sets of MD data shown, the
relative statistical error was approximately 2%. The error
bars are only shown for Γ = 0.35 data; error bars for other
Γ values are similar. Figure 3 demonstrates that in non-
ideal plasmas with Γ < 1, the probability to find small
values of the angle θ is reduced due to the repulsion be-
tween the NN and NNN ions, whereas for θ & π/3 the
distribution P (θ) remains practically uniform, confirming
the intuitive expectation. As Γ increases from 0 to 0.35,
it is seen that, first, the probability to find small values
of θ decreases, and, second, the cone around the direction
towards the NN ion, in which P (θ) is reduced, becomes
wider. However, note that due to the sin θ factor in dΩ, the
most probable values of θ are around π/2. This remains
the case throughout our Γ range, despite the repulsive
force exerted by the NN ion.

Let us now discuss the limitations of the MD model
arising from the classical description of the electrons, i.e.,
from the neglect of the quantum effects in the short-range
electron-ion interaction. It is well known (see, e.g., [28])
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(a)

(b)

Fig. 2. (a) Comparison of the MD results for Prat(ζ) with the
ideal-plasma predictions. (b) The same data as in (a), in the
1 < ζ ≤ 2 region, shown on linear scale.

Fig. 3. Comparison of the MD results for P (θ) with the ideal-
plasma predictions.

that, to avoid the collapse of the classical system of elec-
trons and ions, the direct electron-ion interaction potential

Uei(r) =
Zie

r

must be replaced by the pseudopotential with a “regular-
ized” short-range behavior. We have chosen

Ũei(r) =
Zie

r
(1− exp{−r/λc}) , (13)

where the cutoff radius λc may be qualitatively thought of
as a classical emulation of the electron de Broglie length.
The regularized potential Ũei(r) converges to Uei(r) expo-
nentially at r � λc. In the opposite limit, r → 0 (i.e.,
r � λc), Ũei(r) approaches the constant value Ũmin

ei =
Zie/λc. We note that, according to the formulation of the
problem we have given in the Section 2, the numbers of
bound electrons in the test ion and in the NN ion are the
external parameters of the model. We do not consider the
spatial distribution of the bound electrons; rather, their
charges are included in Zi and Zt. Only the free electrons
spatial distribution should be accounted for explicitly in
the potential UNN(r). Therefore, it is important to make
sure that in the MD simulations all of the electrons (or
at least most of them) are indeed free rather than found
in the classical bound states. The MD-simulated electrons
occupying the quasi-periodical orbits with r � a around
individual ions can be for all practical purposes considered
bound. In the case when a significant fraction of all simu-
lated electrons (in the ensemble-average sense) is found in
the bound quasi-periodical orbits, the MD simulations ob-
viously do not correspond to the formulation of the prob-
lem quoted above, since the simulated Zi and Zt are ef-
fectively reduced. Thus, the parameter λc must be chosen
large enough for the relative abundance of the “classical
bound electrons” to be much smaller than unity. On the
other hand, the parameter λc must be chosen small enough
so not to affect the free electron density at r ∼ a, thus,
for the simulations to be accurate, the condition λc � a
must be obeyed. Let us now consider the choice of λc in
greater detail.

We are looking for a constraint on λc imposed by the
requirement of a low relative abundance of the classical
bound electrons in a simulated plasma of ions of a charge
Zi. For the classical electron found over the lowest part
of the Ũei(r) well (i.e., within r . λc from an ion) the
available volume is 4πλ3

c/3, while for a free electron it is
n−1

e = 4πa3Zi/3. The loss of the available volume is com-
pensated, for a bound electron, by the increased proba-
bility to be found in that volume, i.e., by the Boltzmann
factor exp{βeeŨ

min
ei } ≡ exp{Γeia/λc}, where βe is the in-

verse electron temperature. Thus, the relative “statistical
weight” of the electron states within r . λc from ions is
estimated by

W ≈ Zi

(
λc

a

)3

exp
{
Γei

a

λc

}
, (14)
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and the fraction of the electrons found on average within
r . λc from the ions is then given by

Q =
W

W + 1
· (15)

Note that NeQ is not strictly the number of classically-
bound electrons, but rather a total number of electrons
found within r . λc. However, since λc � a, it is certain
that the fraction of the free electrons within r . λc is
small, and thus whenever Q becomes comparable to 1 it
is mostly due to the bound electrons. In other words, the
MD simulations are valid as long as Q� Z−1

i , i.e., as long
as the effective reduction in Zi is much smaller than unity.
From equations (14, 15) it is clear that for Γeia/λc � 1
the ion potential wells (13) are too shallow to keep bound
electrons inside at the temperatures considered, and Q re-
duces indeed to a trivial geometrical factor Zi(λc/a)3 � 1.
In the opposite case of a deep well, Γeia/λc � 1, which
can be due to a small λc (Coulomb collapse) and/or to
a large Γei (strong coupling), most of the electrons are
“classically bound”, Q ≈ 1. Note that in the case when
Zi � 1, the first electrons to collapse onto Kepler orbits
reduce the effective Zi and Γei for the next ones, so a sig-
nificant fraction of electrons can stay free then even for
Γeia/λc � 1; but since Zi is effectively reduced, the MD
results in that case are still inapplicable for our purpose.
The minimal value of W ,

Wmin = Zi

(
Γei

3

)3

exp(3) ≈ 0.744ZiΓ
3
ei,

occurs at λc = Γeia/3. It is thus clear that for Γei & 0.3
the capture of the electrons onto classical orbits becomes
an important issue, and for Γei & 0.5 the significant con-
tribution from the classically bound electrons cannot be
avoided in the MD models with pointlike classical elec-
trons; while it is only such models that can be utilized
to test consistently the free electrons effect on the ion-ion
spatial correlations. For that reason, we do not consider
it amenable to present here the results of the MD sim-
ulations for Γei & 0.5. Still, we note that the simulation
results for Zi = 1, Γ ≈ 0.8 agree well with the theoretical
predictions.

5 Discussion

In the present work, (i) we have derived the exact ex-
pressions for the functions PNN(r) and P0(r) in terms
of the average potential UNN(r) at the NN ion location,
and for the functions PNNN(r, ρ), PNNN(ρ), and Prat(ζ)
in terms of the function PNN(r) and of the product
P0,NNNP1,NNN(r, ρ); (ii) we have found the semi-empirical
expressions for the potentials UNN(r) and UNNN(r, ρ) valid
for ion-ion coupling parameter values 0 ≤ Γ < 1, and
used those expressions to find closed analytical expres-
sions for the distribution functions above; and, finally,
(iii) we have conducted the MD simulations, the results

of which are found in excellent agreement with the ap-
proximate analytical expressions derived above. The sim-
ulations utilize the pure Coulomb particle-particle inter-
action potentials regularized at close range, and are free
from the assumptions made to find UNN and UNNN. This
supports our arguments behind the semi-empirical expres-
sions (5, 10) for UNN(r) and UNNN(r, ρ), respectively, and
suggests that equations (5, 10) indeed approximate well
the true functions UNN(r) and UNNN(r, ρ) in the plasmas
with 0 ≤ Γ < 1, within the framework of the pointlike
ions model. More specifically, obtaining the expressions
for UNN(r) and UNNN(r, ρ), we have (a) assumed that both
the test ion and the perturber ions are pointlike, and (b)
assumed a particular form of the screening contribution
to the NN and NNN potentials (5, 10). The direct com-
parisons to the MD simulations data suggest that the sec-
ond assumption is quite accurate at the Γ values consid-
ered. We emphasize again that in the MD simulations both
electrons and ions were represented as pointlike Coulomb
charges, thus all the screening effects were produced in the
MD simulations by the self-consistent particle motion, and
not introduced artificially.

Thus, to complete the rigorous analysis of the neigh-
bor ion distribution functions in the plasmas considered,
we would like now to consider in detail the precision of the
pointlike ions assumption lying at the base of the present
model for UNN(r) and UNNN(r, ρ). To estimate quantita-
tively the error arising from the use in expressions (5, 10)
of the pointlike ions approximation, we must forgo the
generality of the present formulation of the problem, and
turn to a detailed study of the individual atomic states at
the plasma parameter values that are relevant for the par-
ticular applications of the results above. The problems to
the treatment of which the present results can be applied
directly are, for example, the collectivization of the bound
states in plasmas, determination of the occupation factors
and of the corresponding effective statistical weights of
the atomic and ionic states, spectroscopy and statistics of
the transient quasimolecular states and of bound states
in dense plasmas in general. Thus, we consider the test
atom or ion in an excited state (ground states are rather
weakly affected by the density effects even at Γ = 1).
The perturber ions, on the other hand, are usually found
to be in the ground state. As we said in Section 2, per-
turber ions typically have the charge similar or smaller
than that of the test ion; the latter case is realized when
the dominant chemical element in plasma is fully ionized.
The characteristic linear size of an ion in an excited state
exceeds significantly the size of a similar-charge ion in the
ground state. Thus, perturber ions may well be consid-
ered pointlike in comparison to the test ion, even when
they are not fully ionized. Consequently, below we will be
concerned primarily with the effects of the nonzero size
of the emitter ion, or, more specifically, with the effects of
the nonzero characteristic radius of the emitter ion optical
electron wavefunction.

It is well known (see, e.g., [20]) that the certain bound
state q of the emitter ion undergoes an overbarrier ion-
ization when the distance between the emitter ion and its
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NN ion is smaller than

rq =
Z0e

2

Eq

{
1 + 2

(
Zi

Z0

)1/2}
,

where Z0 ≡ Zt + 1 is the charge of the emitter parent ion,
and Eq is the binding energy of the emitter ion optical
electron in the bound state q. The characteristic linear size
of the emitter ion, defined by the radius of the classically-
allowed region for the optical electron in the potential well
of the emitter parent ion, is given by

Rq =
Z0e

2

Eq
· (16)

Note that Rq is slightly larger than the state q average
wavefunction radius, which could be utilized alternatively
as the atomic linear size scale. The meaning of the scales
rq and Rq is as follows. The ion densities of interest are
those producing a & rq , otherwise the occupation factor
(i.e., the surviving bound fraction) for the state q is much
less than unity, and the state q is virtually “extinct”. The
charge of the test ion, on the other hand, may be con-
sidered equal to Zt as long as r � Rq. As r approaches
Rq, the test ion charge starts to grow, and approaches
Z0 = Zt + 1 for r � Rq (as the NN ion penetrates the
“orbit” of the test ion optical electron). It is thus clear
that the principal amendment for UNN(r) in this situation
is to replace Zt in (5) by a smooth function Z̃t(r), chang-
ing from Zt to Zt + 1 as r becomes smaller than Rq. Note
that this implies that PNN(r) always converges to zero ex-
ponentially at small r, even in the case when Zt = 0 (neu-
tral emitter). As r decreases further, it is possible that
the NN ion would also penetrate the orbits of the emitter
ion core electrons, corresponding to a further increase in
Z̃t(r); but this occurs at r’s too small to be important
for practical purposes. It is clear from the comparison of
rq and Rq that the plasmas with Zt � Zi and the plas-
mas with Zt ≈ Zi differ qualitatively with the respect to
the spatial scales relation involved. Indeed, in the plasmas
with Zt ≈ Zi, the bound state in question becomes free
(moves above the barrier peak) when the distance to the
NN ion, r = rq , is significantly larger than the emitter ion
size Rq (typically, by a factor of 3 or so). Then, for the
situation of interest, rq . a, only the low-r wing of the
distributions P0(r), PNN(r) and PNNN(r) may be affected
by the increase in the charge of the emitter ion as seen by
its near neighbors. P0(r) is particularly insensitive to this
effect, since in the region r . a/3 one finds P0(r) ≈ 1 any-
way. The situation in the plasmas where Zt � Zi is quite
different, since in those plasmas the ratio rq/Rq is notably
smaller (often smaller than 2), and an overbarrier escape
of the optical electron does not occur unless the nearest
perturber ion gets almost as close to the emitter ion as
r = Rq. On the other hand, for Zt � 1 the change of Zt

by 1 does not produce a significant effect on the neighbor
ions spatial distribution.

The maximal value of the ion density ni for which our
model for UNN(r) and UNNN(r, ρ) is still valid is given by

the condition Γii < 1, i.e.,

ni <
3T 3

4πZ6
i e

6
· (17)

The account of the nonzero size of the perturber ions does
not impose an additional limitation on ni, as for Γii < 1
the interionic distance a exceeds the average radius of a
perturber ion 〈rgs〉 at least by a factor of 3. Indeed, the
ionization composition of dense plasmas (except the ex-
tremely transient ones) is close to that in the local thermo-
dynamic equilibrium. Then, ions are found predominantly
in the ionization stage with the ground state binding en-
ergy Egs ≈ 6Te, as the system of Saha equations readily
shows (see e.g. [29]). Condition Γii < 1 rewrites then as

a >
6Z2

i e
2

Egs
·

Using (16) to determine the characteristic size Rgs of the
perturber ion, we find

a >
6Z2

i

Zi + 1
Rgs '

6Z2
i

Zi + 1
〈rgs〉 ≥ 3 〈rgs〉 .

Thus, condition (17) is sufficient to validate the treatment
of the perturber ions as pointlike.

Based on the results of the present work, we have de-
veloped an accurate approach to the determination of the
occupation factors and effective statistical weights of the
atomic and ionic states in plasmas. This approach and its
results will be described in reference [11]. In particular, we
will discuss there the effect of the correction term Z̃t(r) on
the effective statistical weight values. Detailed calculations
show that the effect of the nonzero-ion-size corrections on
the effective statistical weight values for the excited states
in dense nonideal plasmas, even for Γ approaching unity,
is rather small. The corrections of about 20% or smaller
seem to be typical. The effect of the emitter ion polariza-
tion by the NN ion field on the spatial distributions of the
neighbor ions is significantly weaker yet.

6 Conclusion

In plasmas, local microscopic conditions vary between in-
dividual ion locations. An accurate treatment of plasma
density effects requires detailed knowledge of the probabil-
ity distributions for these conditions. The traditional ap-
proach was to reduce the entire variety of local microscopic
conditions to a single parameter: the Uniform Local Mi-
crofield strength at the location of the test ion. The ULM
strength distribution is known quite accurately for a vari-
ety of macroscopic plasma conditions [1,30], and has been
used extensively (primarily in plasma diagnostics based
on spectral line shapes [1]). However, as we have already
pointed out, the ULM approximation can not be utilized
to treat the problems where the electron wavefunctions
with spatial range comparable to the interionic distances
are considered, since on such scales the local microfield is
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not uniform. For the treatment of these problems, a more
detailed description of the local microscopic conditions is
required, and therefore the spatial distribution of the few
nearest neighbor ions must be known.

In the present paper we have derived expression (3)
for the distance-to-NN-ion distribution PNN(r), expres-
sion (A.1) for the probability P0(r) to find no ions
within r from the test ion, and expressions (7, 6) for the
distance-to-the-NNN-ion distribution PNNN(ρ) and for the
3-particle distribution PNNN(r, ρ). We also present expres-
sion (11) for the distribution Prat(ζ) of the ratio of the
distances ρ and r. For the ease of practical calculations
involving these expressions, we have suggested simple an-
alytical expressions (5, 10) for the potentials UNN(r) and
UNNN(r, ρ). Comparison with classical-trajectory MD sim-
ulations showed that even with these semi-empirical po-
tentials the accuracy of the theoretical predictions is high.
We also study the distribution P (θ) of the angle between
the directions to the NN and NNN ions.

The expression for PNNN(r, ρ) here derived gives the
simultaneous probability to find the NN ion at r and
the NNN ion at ρ. This quantity is especially useful for
the treatment of non-resonant charge exchange, as it al-
lows the effect of the perturbation produced by the nearby
spectator ions on the charge exchange rates in plasma to
be evaluated. For a given distance r between the donor
(“test ion”) and the recipient (“NN ion”) the distance ρ
to the spectator (“NNN ion”) determines the mixing of
the wavefunctions of the electron being removed. In the
cases when the charge exchange occurs by tunneling, the
rate of charge exchange depends strongly on the parabolic
quantum numbers n1, n2, m describing the initial state of
the test ion optical electron in the NN ion field [19,31].
The field of the NNN ion, being not coaxial with the NN
ion field, produces mixing of the states with different val-
ues of n1− n2 and m, and thus affects the tunneling rates
from these states. Mixing coefficients may be rather eas-
ily found, since the effect of the NNN ion amounts to a
spatial rotation of the states |n1, n2,m〉 by a finite angle
α determined by ζ = ρ/r and θ. Knowledge of the func-
tions PNNN(r, ρ) and P (θ) thus allows the magnitude of
this effect to be estimated under various circumstances.
This will be discussed in detail in reference [11].

The authors express their deepest gratitude to H.R. Griem
and D. Salzmann for their help and concern on all stages of
the present research.

Appendix A: Accurate PNN(r) derivation

We choose the origin at the test ion location. In the con-
ventional approach, the probability P0(r2, r2 + dr) for
the absence of ions in the spherical shell (r2, r2 + dr)
around the test ion was considered independent on the
“outcome of the trials” for the presence of an ion at any
radius r1 smaller than r2. Consequently, the probability
P0(r) ≡ P0(0, r) for the absence of ions (besides the test
one) in the sphere r was written as the product of un-

conditional probabilities for the absence of ions inside the
thin spherical shells that constitute the sphere r:

P0(r) = lim
dr→0

∏
r′=0,dr,...,r−dr

P0(r′, r′ + dr).

In reality, however, P0(r2, r2+dr) depends on the presence
or absence of ions at all r1 < r2. Therefore, the probabil-
ity P0(r) must be written as the product of conditional
probabilities for the absence of ions inside the spherical
shells (r′, r′+ dr) provided there are no ions inside r′, i.e.,

P0(r) = lim
dr→0

∏
r′=0,dr,...,r−dr

P0(r′, r′+dr |no ions inside r′).

The first factor in this product is explicitly equal to

P0(0,dr |no neighbor ions at origin) ≡ P0(0,dr),

since the probability for the absence of ions (besides the
test one) at the origin is unity.

For r′ > 0, in the absence of ions inside r′, the poten-
tial at r′ is given by UNN(r′), and the density of ions at
r′ is given by ni exp(−βZieUNN(r′)). This enables us to
express:

P0(r′, r′ + dr |no ions inside r′) =

lim
V→∞; N

V
=ni=const.

[
1− 4πr′2dr′ exp{−βZieUNN(r′)}

V − 4
3πr
′3

]N
= lim

N→∞

[
1− 4πnir

′2dr′ exp{−βZieUNN(r′)}
N

]N
= exp

[
−4πnir

′2dr′exp{−βZieUNN(r′)}
]
.

The product can then be readily evaluated:

P0(r) =

lim
dr→0

∏
r′=0,dr,...,r−dr

exp
[
− 4πnir

′2dr′ exp{−βZieUNN(r′)}
]

= exp
[
− 4πni

r∫
0

r′2dr′ exp{−βZieUNN(r′)}
]
. (A.1)

The NN distribution function PNN(r)dr is given by the
decrease of P0(r) across dr, i.e.

PNN(r) ≡ −dP0(r)
dr

,

yielding the expression (3).
A simpler version of the same derivation is as follows.

The probability P0(r + dr) for the absence of ions in the
sphere of radius r+ dr around the test ion is given by the
product of probabilities

P0(r)P0(r, r + dr| no ions inside r).
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In the absence of ions (besides the test one) in the sphere
r, the ion density in the spherical shell (r, r+ dr) is given
by ni exp{−βZieUNN(r)}. Thus,

P0(r, r + dr |no ions inside r) ≡
1− ni exp{−βZieUNN(r)}4πr2dr

and

P0(r + dr) = P0(r)
[
1− ni exp{−βZieUNN(r)}4πr2dr

]
,

which implies

dP0(r)
dr

= −ni exp{−βZieUNN(r)}4πr2P0(r).

Given the boundary condition P0(0) ≡ 1, the expres-
sions (3, A.1) readily follow. It is noteworthy that this
result is a manifestation of the general fact that whenever
the particle density immediately outside the sphere of ra-
dius r is given by a function n(r) integrable between 0 and
r, the probability for the absence of particles inside r is
given by

P0(r) = exp
{
− 4π

r∫
0

n(r′)r′2dr′
}
,

regardless of the conditions inside the sphere. For n(r)
given by the Boltzmann formula

n(r) = n exp{−βu(r)}

where u(r) is the potential energy of a particle at r, the
probability P0(r) is always given by

P0(r) = exp
{
− 4πn

r∫
0

exp{−βu(r′)}r′2dr′
}
,

and thus

PNN(r) =

4πnr2 exp
{
− βu(r) − 4πn

r∫
0

exp
{
− βu(r′)

}
r′2dr′

}
·

This form is, therefore, general; the physics of the inter-
actions involved finds its manifestation in u(r) only.
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